

Emergence, Stability and Decay of Skyrmions in Chiral Magnets

Christian Pfleiderer

Physik-Department Technische Universität München

Vortices in Daily Life...

Kelvin's Vortex Model of Atoms

Instalment, received Nov.-Dec. 1869 [§ 59-§ 64 (f)].

Lord Kelvin William Thomson (1824-1907)

perhaps the first suggestion of "topological solitons"

Towards a Unified Field Theory

key idea: Are bosons non-linear excitations of fermion fields?

(Are bosons topological solitons of fermion fields?)

Werner Heisenberg (1901-1976) NP 1932

From Tony Hilton Royle Skyrme to Skyrmions

Tony Skyrme (1922-1987)

key idea: Are fermions non-linear excitations of boson fields?

(Are fermions topological solitons of boson fields? winding number → baryon number)

Proc. Royal Society London, Series A **260**, 130 (1961) Proc. Royal Society London, Series A **262**, 237 (1961) Nuclear Physics **31** 556 (1962)

From Tony Hilton Royle Skyrme to Skyrmions

Tony Skyrme (1922-1987)

Proc. Royal Society London, Series A **260**, 130 (1961) Proc. Royal Society London, Series A **262**, 237 (1961) Nuclear Physics **31** 556 (1962)

Main Entry: **sol·i·ton** Pronunciation: \'sä-lə- tän\

: a solitary wave (as in a gaseous plasma) that propagates with little loss of energy and retains its shape and speed after colliding with another such wave

Main Entry: **to·pol·o·gy** Pronunciation: \tə-'pä-lə-jē, tä-\

2 a (1): a branch of mathematics concerned with those properties of geometric configurations (as point sets) which are unaltered by elastic deformations (as a stretching or a twisting) that are homeomorphisms (2): the set of all open subsets of a topological space b:
<u>CONFIGURATION</u> <topology of a molecule> <topology of a magnetic field>
— to-pol-o-gist \-jist\ noun

winding number: +2

On the Winding Number in Spin Systems

On the Winding Number in Spin Systems

On the Winding Number in Spin Systems

plot M. Rahn

 $\gamma = \frac{1}{2\pi} \oint_{\Gamma} \nabla \varphi \cdot dl$

 $\nabla \varphi > 0$ if one rotates to the left $\nabla \varphi < 0$ if one rotates to the right

Winding in Two-Dimensional OP-Space

Discovery of the Skyrmion

citations per year

PRSL - Ser. A **260**, 130 (1961) PRSL - Ser. A **262**, 237 (1961) Nuclear Physics **31** 556 (1962)

ISI: >3006 citations (170 before '83)

"Static properties of nucleons in the Skyrme model" Adkins, Nappi, Witten, Nucl. Phys. B **228** 552 (1983) ISI: 1484 citations

Ed Witten (ISI 68.800; h=124)

THE MULTIFACETED SKYRMION

Contents:

- Hadrons and Nuclear Matter:
 - Skyrmions and Nuclei (R A Battye et al.)
 - Electromagnetic Form Factors of the Nucleon in Chiral Soliton Models (G Holzwarth)
 - Exotic Baryon Resonances in the Skyrme Model (D Diakonov & V Petrov)
 - Heavy-Quark Skyrmions (N N Scoccola)
 - Skyrmion Approach to Finite Density and Temperature (B-Y Park & V Vento)
 - o Half-Skyrmion Hadronic Matter at High Density (H K Lee & M Rho)
 - Superqualitions: Baryons in Dense QCD (D K Hong)
 - Rotational Symmetry Breaking in Baby Skyrme Models (M Karliner & I Hen)

Condensed Matter:

- Spin and Isospin: Exotic Order in Quantum Hall Ferromagnets (S M Girvin)
- Noncommutative Skyrmions in Quantum Hall Systems (Z F Ezawa & G Tsitsishvili)
- o Skyrmions and Merons in Bilayer Quantum Hall System (K Moon)
- Spin and Pseudospin Textures in Quantum Hall Systems (H A Fertig & L Brey)
- Half-Skyrmion Theory for High-Temperature Superconductivity (T Morinari)
- Deconfined Quantum Critical Points (T Senthil et al.)

• String Theory:

- Skyrmion and String Theory (S Sugimoto)
- Holographic Baryons (P Yi)
- The Cheshire Cat Principle from Holography (H B Nielsen & I Zahed)
- Baryon Physics in a Five-Dimensional Model of Hadrons (A Pomarol & A Wulzer)

Magnetic Phase Diagram of MnSi

Mühlbauer, et al. Science 323, 915 (2009) Neubauer, et al. PRL 102 186602 (2009)

Mühlbauer, et al. Science **323**, 915 (2009) Neubauer, et al. PRL **102** 186602 (2009)

Münzer, et al. PRB(R) **81** 041203 (2010) Adams, et al. J. Phys. Conf. Series (2010) Bauer, et al. PRB(R) **82** 064404 (2010) Seki al., Science **336** 198 (2012) Adams et al., PRL, **108** 237204 (2012)

illustration from Bos et al. (2008)

Real Space Observation with Lorentz Force Microscopy

at room temperature

semiconductor

insulator

FeGe

Münzer, et al. PRB(R) **81** 041203 (2010) Yu et al., Nature **465** 901 (2010) Cu₂OSeO₃

Seki al., Science **336** 198 (2012) Adams et al., PRL, **108** 237204 (2012)

Yu et al., Nat. Mater. 10 106 (2010)

CP & Rosch, Nature (N&V) **465** 880 (2010)

Outline

- Introductory Remarks on Skyrmions
- Emergence of Skyrmions in Chiral Magnets
 - Fluctuation-Induced First Order Transition
 - ➤ Magnetic Phase Diagram
 - > Nature of the A-Phase
 - Poor Man's Probe of Topology
- Topological Unwinding of Skyrmions
- Formation of a Topological Non-Fermi Liquid (?)
 - ➤ Non-Fermi Liquid Puzze in MnSi
 - ➤ Hall Effect under Pressure
- List of Untold Stories

Emergent Electrodynamics of Skyrmions

$$\begin{aligned} \boldsymbol{B}_{i}^{e} &= \frac{\hbar}{2} \epsilon_{ijk} \hat{n} \cdot (\partial_{j} \hat{n} \times \partial_{k} \hat{n}) \\ \boldsymbol{E}_{i}^{e} &= \hbar \hat{n} \cdot (\partial_{i} \hat{n} \times \partial_{t} \hat{n}) \end{aligned}$$

current density: 10⁶ A/m² !!!

Jonietz et al, Science **330**, 1648 (2010) Schulz et al. Nature Physics **8** 301 (2012) Everschor et al., PRB **86** 054432 (2012)

animation A. Rosch

Collaborations

samples

A. Bauer

A. Neubauer W. Münzer S. Gottlieb

bulk properties

- R. Ritz C. Schnarr M. Halder C. Franz M. Wagner F. Rucker
- M. Hirschberger¹ P. Niklowitz³ T. Schulz⁴ M. Rahn⁵ F. Birkelbach

neutron scattering

- T. Adams
- A. Chacon
- J. Kindervater G. Brandl
- S. Dunsiger
- M. Janoschek²
- F. Jonietz
- F. Bernlochner
- A. Tischendorf

- S. Mühlbauer
- R. Georgii
- W. Häußler
- P. Link
- B. Pedersen
- T. Keller (MPI)
- P. Böni

³London

⁴Mainz

⁵Oxford

Collaborations

Köln

R. Bamler S. Buhrandt J. Waizner C. Schütte *K. Everschor* M. Garst *B. Binz* A. Rosch

Utrecht R. Duine

Berkeley

- J. Koralek
- D. Maier
- J. Orenstein
- A. Vishwanath

München

T. Schwarze D. Grundler R. Hackl (WMI)

Dresden

- P. Milde
- D. Köhler
- J. Seidel
- L. Eng

Lausanne H. Berger

Braunschweig P. Lemmens

Hierarchical Energy Scales in B20 Compounds and the Fluctuation-Induced First Order Transition

Hierarchical Energy Scales in B20 compounds

Landau-Lifshitz vol. 8, §52

B20: no inversion center

left-handed

B20: no inversion center

right-handed

- (1) ferromagnetism
- (2) Dzyaloshinsky-Moriya
- (3) crystal field ($P2_13$):

locked to <111> or <100>

	T _N (K)	λ (Å)
MnGe	170	30 to 60
Mn _{1-x} Fe _x Si	< 28	180 to 120
Fe _{1-x} Co _x Si	< 45	> 300
FeGe	280	700
Cu ₂ OSeO ₃	54	620

Breakthrough for "Itinerant Spin Fluctuations"

Lonzarich JMMM **45** 43 (1984) Lonzarich, Taileffer. J. Phys. Cond. Matter **18** 4339 (1985)

Prediction of a Spontaneous Skyrmion Phase

Rößler, Bogdanov, CP, Nature **442**, 797 (2006)

cf Hamann et al., PRL 107, 037207 (2011)

Fluctuation-Induced First Order Transition a helimagnetic Brazovskii transition

Fluctuation-Induced First Order Transition a helimagnetic Brazovskii transition

M. Janoschek, M. Garst et al. arXiv/1205.4780

decreasing temperature

Ishikawa & Arai JPSJ 53, 2726 (1984)

mostly a spin-flop phase

 $F[\vec{M}] = \Delta F^{(\rm FM)} + \Delta F^{(\rm DM)} + \Delta F^{(\rm aniso)}$

Magnetic Phase Diagram of MnSi Revisited

Specific Heat of MnSi

Bauer, Garst, CP, PRL 110, 177207 (2013)

Specific Heat of MnSi

Bauer, Garst, CP, PRL 110, 177207 (2013)

Magnetic Phase Diagram of MnSi Revisited

Nature of the A-Phase

Neutron Scattering Pattern in the A-Phase

Mühlbauer et al, Science 323, 915 (2009)

0 q_x(Å⁻¹) 0.05

Very Weak Pinning to Crystal Lattice: Neutrons all measurements at MIRA (FRM II)

Stabilization through anisotropy?

Bogdanov & Yablonskii JETP 68 101 (1989)

measurements @ MIRA, FRM II

MnSi

Buhrandt & Fritz, arXiv/1304.6580

Topological Properties of the Rigorous Solution

phase btw fundamental modes

center: M antiparallel B

projection from above

winding number per unit cell: $\Phi = -1$ lattice of topological knots

Adams et al., PRL 107, 217206 (2011)

Poor Man's Experimental Probe of Topology (emergent magnetic field)

From Topological Winding to Berry's Phase

Hall Effects in Magnetic Materials

Anomalous Hall Effect in MnSi

Lee et al. PRB **75**, 172403 (2007) see also Neubauer et al., Physica B (2009)

Anomalous Hall Effect in MnSi

Emergent Magnetic Field of Skyrmions

conduction electron tracks spin structure:

- collect Berry phase
- express as Aharonov-Bohm phase
- represents effective field

$$\vec{B}_{eff} = \Phi_0 \vec{\Phi}$$

$$\Phi_0 = h/e$$

$$\Phi^{\mu} = \frac{1}{8\pi} \epsilon_{\mu\nu\lambda} \hat{n} \cdot (\partial_{\nu} \hat{n} \times \partial_{\lambda} \hat{n})$$
trivial topology:
$$\Phi = 0$$

non-trivial topology: $\Phi = -1$

 $\rightarrow \vec{B}_{\rm eff} \approx -13 \ {\rm T}$

Binz, Vishwanath Physica B **403** 1336 (2008) Neubauer, et al. PRL **102** 186602 (2009)

cf giant emergent fields in MnGe

Kanazawa et al., PRL 106 156603 (2011)

Topological Unwinding of a Skyrmion Lattice by Magnetic Monopoles

Skyrmion Lattices in B20 Compounds

Adams, et al. J. Phys. Conf. Series (2010)

CP et al., J. Phys.: Cond. Matter 82 064404 (2010)

Metastable Skyrmion Lattice in Fe_{1-x}Co_xSi

Münzer, Neubauer, Mühlbauer, Franz, Adams, Jonietz, Georgii, Böni, Pedersen, Schmidt, Rosch, Pfleiderer, PRB(R) **81** 041203 (2010)

Magnetic Force Microscopy

Magnetic Force Microscopy

SANS

(110)

10 B=21.1mT

T=10.3 K

15 B1

lq,l (10⁻³Λ⁻¹)

20 (a)

10

SANS

(100)

(110)@

600

400 (almon) 200

MFM

MEN

(100)

(110)@

A1

[q,] (10⁻³A⁻¹)

(110)

B = 20 mT

T=10.0K

Milde et al, Science 340, 1076 (2013)

Monte Carlo Simulations in the Metastable Regime

Topological Unwinding of Skyrmions by means of Magnetic Monopoles

Paul Dirac

prediction of magnetic monopoles to explain **quantized** electric charge

defects in (emergent) B-field with quantized charge

Formation of a Topological Non-Fermi Liquid Non-Fermi Liquid Puzzle in MnSi Revisited

Magnetic Quantum Phase Transition in MnSi

Doiron-Eyraud et al, Nature (2003)

NFL-Resistivity without Quantum Criticality

CP, Julian, Lonzarich Nature **414**, 427 (2001)

Doiron-Eyraud et al, Nature (2003)

NFL-Resistivity without Quantum Criticality

1

Thessieu, CP, Stepanov, Flouquet, JPCM 9, 6677 (1997) CP, Julian, Lonzarich Nature 414, 427 (2001) Doiron-Eyraud et al, Nature (2003)

Neutron Spin-Echo & Larmor Diffraction

measurements at TRISP (FRM II)

Non-Fermi Liquid Metal without Quantum Criticality

partial order above p_c: large 'droplets' but no expansion!!!

CP, Böni, Keller, Rößler, Rosch, Science 316, 1871 (2007)

Partial Order in the Non-Fermi Liquid Regime

CP, Reznik, Pintschovius, v. Löhneysen, Garst, Rosch Nature **427**, 227 (2004) CP, Reznik, Pintschovius, Haug PRL **99**, 156406 (2007)

Neutron Scattering vs mu-SR

Formation of a Topological Non-Fermi Liquid (?) Hall Effect under Pressure

Hall-Effect under Pressure (first results)

Hall-Effect under Pressure Revisited

Ritz, Halder, Franz, Bauer, Wagner, Bamler, Rosch, CP PRB 87, 134424 (2013)

Hall-Effect under Pressure Revisited

Ritz, Halder, Franz, Bauer, Wagner, Bamler, Rosch, CP PRB 87, 134424 (2013)

Hall-Effect under Pressure Revisited

Ritz, Halder, Franz, Bauer, Wagner, CP, Nature 497, 231 (2013)

Ritz, Halder, Franz, Bauer, Wagner, CP, Nature 497, 231 (2013)

pressure

Formation of a Topological Non-Fermi Liquid

Ritz, Halder, Franz, Bauer, Wagner, CP, Nature 497, 231 (2013)

Untold Stories Instead of Conclusions

- emergent electrodynamics
- skyrmion flow
- ab-initio Hall effect
- inelastic neutron scattering
- polarised neutron scattering
- magnetic resonance
- Raman scattering
- routes towards skyrmions
- role of magnetic anisotropy
- uniaxial pressure tuning
- composition tuning
- elasticity moduli
- new systems
- thin films
- manipulating skyrmions