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Strongly correlated systems
transition 
metal ions

ion+oxygen cage
=transition metal 

oxide

VO2 Room 
temperature MIT 

La1-xSrxMnO3
Colossal 
Magnetoresistance

LixCoO2, NaxCoO2 
Battery materials
Thermoelectrics 
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La1-xSrxCuO4
High temperature 
superconductor 

Failure of band picture (DFT)
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Hubbard model : the theory of everything

For oxides, a simple generalization is obtained with a three-band model Hamiltonian

Electronic correlation due to both charge transfer energy 
and local U repulsion, Zanen-Sawatzky-Allen milestone 

(ZSA) paper  (PRL 55, 418 ‘ 85).

One band crossing the Fermi level, geometry of the lattice taken into account by the bandwidth “t” 
and the connectivity matrix <i,j>. Hilbert space 4N, simple theory, but hard to solve.

Metal to insulator transition (MIT) at integer filling:  

T=0, Brinkman-Rice QCP (Uc2), simple argument (PRB 2, 4302 ’70) and confirmed by single 
site DMFT (G. Kotliar, EPB 11,27‘99)

U<<1: paramagnetic Metal                      U>>1 : Mott insulator

charge transfer insulator : Pε−dε→U 5
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Dynamical mean-field theory

)j!,i!("

)jτ,iτ(∑

Approximation 
The self 

energy is local 
in space

)x(∑=)y,x(∑

Projectors 
connect the 

Kohn-Sham 
orbitals to the 

local set of 
atomic orbitals

A. Georges and G. Kotliar PRB 45, 6479 (1992)
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DMFT : a success story
Mott transition 

Sordi et al, PRL 104, 226402 ’ 10
High T-c superconductors

E. Gull et al, arXiv 1304.6406
Chalcogenides

Z. Pin et al, PRB 86, 195141
Plutonium

Savrasov et al, Nature 410, 793, ‘ 01
Cold atoms

L. De Leo et al, PRL 101, 210403 ’08
Vanadates

Biermann et al, PRL 94, 26404, ‘ 05 
Nano contacts

D. Jacob et al, PRL 103,16803 ‘ 09
7

Captures the transition from 
localised quantum states to 
delocalized band electrons

Bridges many body theory 
with density functional 
theory in a consistent way 
(DFT-DMFT)

Quantum concepts such as 
entanglement, quantum 
supersition, valence 
fluctuations, are captured 
within this theory
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ground state         singly excited configurations      double excitation 

Quantum Chemistry Approaches
Configuration Interaction (CI) - expand the wave-
funciton in terms of Slater determinants :

€ 

ΨCI = cmΨm
m=1

NCSF

∑
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Active orbitals 

Quantum Chemistry Approaches
Partition of orbitals:

Core orbitals 
(filed, frozen)

active orbitals 
(occupied)

valence orbitals 
(unoccupied)

virtual orbitals 
(unoccupied, 
frozen)
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Quantum Chemistry Approaches
Important to choose carefully orbitals
Example : set of active orbitals for heme : 

JACS, 130, 14778 ’ 08 11

to Turbomole44 and DL_POLY,45 which together handle the
QM(DFT) and MM calculations. A series of functionals, from
pure GGA ones to hybrid ones including BP86,46 BLYP,
B3LYP,47 PBE, and PBE0,48 was used for the QM(DFT) part,
and the CHARMM22 force field49 was used for the MM part
throughout the work. The active region of the protein, which is
described by DFT, interacts with the rest of the protein (MM
part) by electrostatic and Lennard-Jones interactions. The
electronic embedding scheme50 was used to account for the
polarization effect of the QM part induced by the protein
environment. The dangling bond at the QM/MM boundary was
saturated by a hydrogen-link atom and treated in the framework
of the charge-shift method.50

DFT/MM geometry optimizations were performed using a basis
set called B1, which is comprised of the Wachters all-electron basis
set51 augmented with diffuse d and polarization f functions
(8s7p4d1f), on iron, a double-! basis set augmented with polariza-
tion and diffuse functions, 6-31+G(d),52 on the first coordination
sphere, and 6-31G52 on the rest of the atoms. The energy was
corrected by QM(DFT)/MM single-point calculations with a larger
basis set B2, which is identical to B1 with respect to iron, while
the rest of the atoms are described by 6-31++G(d,p) basis set.52

To test the effect of the environment on the electronic structure
we also calculated a gas-phase model with DFT (so-called “model
II”; see next subsection).

Charge Analyses. The NBO charge population analysis was
employed in this work.53 The orbital plot was done using the graphic
program MOLEKEL.54

Spin Contamination. Due to the spin contamination of the
symmetry-broken UDFT results for the lowest open-shell singlet
state, we applied Yamaguchi’s spin-projected correction55 for our
calculated energy of the symmetry-broken singlet state as shown
below

ES ) (EC - aES+1) ⁄ (1- a), a) [〈S2〉C - s(s+ 1)] ⁄ 2(s+ 1) (1)

EC is the spin-contaminated energy for the singlet state, ES+1 is the
energy for the triplet state (it has only small spin contamination),
and 〈S2〉C is the calculated spin expectation value of the spin-
contaminated singlet state.

2.2. CASSCF/MM and CASSCF(g) Methodology and Soft-
ware. The optimized geometry and point charges generated from
the DFT/MM calculation were used as input for CASSCF/MM
calculations, which were performed by the Gaussian 03 pro-

gram.56 We tried several kinds of active spaces for the CASSCF
before we determined the final choice of the 14 electrons
distributed in 12 orbitals. The active orbitals consists of iron
3dxy, 3dyz, 3dxz, 3dx2-y2, 3dz2, 4dxy, and 4dxz, four O-O π, π*
(perpendicular to and in the Fe-O-O plane), that is, five iron
3d orbitals, two 4d orbitals, four π and π* of O2, and one b1g
type (using D4h symmetry porphine terminology) combination
of the ligand orbital of heme nitrogen atoms which form a Fe-N
(Porp) σ bond. The two iron 4d orbitals corresponding to the
occupied 3dxy and 3dxz orbitals were also included in the active
space to account for the double-shell effect (the radial correlation
in the d shell).57 These CASSCF canonical orbitals are shown
in Figure 2, and their main constituents are listed in Table 1.

To explore the possible effect exerted by the protein environment
on the oxyheme at the CASSCF level we performed both CASSCF/
MM calculations, referred to as “model I”, as well as a gas-phase
species, “model II”, which does not include the point charges
generated in the QM/MM calculation nor does it include a His64
moiety that is H bonded to the O2 moiety. Thus, this latter

(43) ChemShell 2.05b4; Sherwood, P.; et al. J. Mol. Struct. (THEOCHEM)
2003, 632, 1.

(44) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys.
Lett. 1989, 162, 165.

(45) Smith, W.; Forester, T. J. Mol. Graph. 1996, 14, 136.
(46) (a) Becke, A. D. J. Chem. Phys. 1986, 84, 4524. (b) Perdew, J. P.

Phys. ReV. B 1986, 33, 8822.
(47) (a) Becke, A. D. Phys. ReV. A 1988, 36, 3098. (b) Lee, C.; Yang, W.;

Parr, R. G. Phys. ReV. B 1988, 37, 785. (c) Becke, A. D. J. Chem.
Phys. 1993, 98, 5648. (d) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.

(48) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77,
3865. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett.
1997, 78, 1396. (c) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem.
Phys. 1996, 105, 9982.

(49) MacKerell, A. D., Jr; et al. J. Phys. Chem. B 1998, 102, 3586.
(50) Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580.
(51) (a) Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033. (b) Hay, P. J.

J. Chem. Phys. 1977, 66, 4377. (c) Bauschlicher, C. W., Jr.; Langhoff,
S. R.; Partridge, H.; Barnes, L. A. J. Chem. Phys. 1989, 91, 2399.

(52) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,
2257.

(53) (a) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.
NBO, Version 3.1. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F.
J. Chem. Phys. 1985, 83, 735.

(54) Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. MOLEKEL 4.3;
Swiss Center for Scientific Computing: Manno, Switzerland, 2000,
2002.

(55) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett.
1988, 149, 537.

(56) Frisch, M. J.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:
Wallingford, CT, 2004.

(57) Roos, B. O.; Andersson, K.; Fülscher, M. P.; Malmqvist, P. A.;
Serrano-Andrés, L.; Pierloot, K.; Merchán, M. AdV. Chem. Phys. 1996,
93, 219.

Figure 2. CASSCF active orbitals of oxy-Mb in model I.

14782 J. AM. CHEM. SOC. 9 VOL. 130, NO. 44, 2008

A R T I C L E S Chen et al.
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Convergence of DMFT and CI

Hartree Fock type approaches used as solver for 
DMFT

"Dynamical mean-field theory from a quantum 
chemical perspective

D. Zgid and G. Chan J. Chem. Phys., 134, 094115 
(2011)

Quantum Monte Carlo to sample CI 
configurations, see e.g. Booth GH, Chan GKL, 
Journal of Chemical Physics, 138, 029901 (2013) 

Decoupling of correlated atom from system
12
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DFT+DMFT

 Extensive set DFT+DMFT packages in the plane wave basis
Wien2K+DMFT (K.Haule)
Wien2K+TRIQS (M. Aichhorn, M.Ferrero, O. Parcollet) 
DFT+DMFT in LMTO basis (A.I. Lichtenstein)
DFT+DMFT in Abinit (B. Amadon) ... and others ... 

G=0 approach, requirements : 
DMFT in localized basis set
Real space approach 
Large unit-cells

The catch (problematic to some extent ... ) : 
non-orthogonal basis set

13
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Can DMFT improve CI or DFT approaches to molecules?

DMFT treats all impurity-bath excited 
configurations 

Quantum entanglement: multi-determinantal 
effects contained in the theory

Fluctuating magnetic moment, rather than 
symmetry broken states

valence fluctuations

Finite temperature properties (most experiments 
done on liquid phases) 

Self-consistent DMFT : corrects back the DFT 

Catch : hard to implement, expensive numerically, 
impurity solver on real axis 14

Wednesday, 19 June 13



ONETEP : Linear scaling density matrix DFT

Optimise the NGWFs, the non-orthogonal 
localised functions {F}

instead of orthogonal extended wave-functions 
{y}

With the same accuracy as plane-wave methods 
(J.Chem. Phys 119, 8842 ’03)

Linear scaling (truncation of the density kernel)

Non-orthogonal Generalised 
Wannier Functions (NGWFs) Molecular orbitals (MOs) 

ONETEP - Linear Scaling Density Matrix DFT  

Wednesday, 19 June 13



DMFT in the NGWFs basis set

Lattice Green’s function written in the basis of a set of NGWFs :

Projected Green’s function:

DMFT - projection on a set of atomic wave-function {f}: 

3

calculations.

A spherically symmetric trial impurity subspace was
defined by a spanning set of iron 3d orbitals, the or-
thonormal set {'

m

} produced by solving the spherically-
symmetric Schrödinger equation subject to the norm-
conserving iron pseudopotential with an appropriate con-
fining potential, the within a truncation sphere of radius
6.6 Å. The same procedure was used to generate the
initial guesses for the NGWFs during the initialization
of the DFT calculation, so that the trial impurity sub-
space formed a proper subspace of the initial guess for
the Kohn-Sham Hilbert space. Since the latter is op-
timized as the energy is minimized with respect to the
NGWFs, so, at convergence of the DFT algorithm, the
Hubbard projectors finally chosen to span the impurity
subspace of DFT+DMFT were the so-called symmetry-
adapted Nonorthogonal Generalized Wannier Functions
(SNGWFs), defined by

|'̃
m

i = |�
↵

ih�↵|'
m

i = |�
↵

i �S�1
�
↵� h�

�

|'
m

i. (3)

Thus, the final impurity subspace is a proper subspace
of the converged Kohn-Sham Hilbert space, a necessary
condition for a strictly causal self-energy, but retains the
3d symmetry of the numerical atomic orbitals (the gen-
eralization to nonorthogonal projector functions in this
context is discussed extensively in Ref [26]).

Once the fully-converged DFT energy minimization of
was carried out, for each heme strain, the full Green’s
function was initially computed in the finite-temperature
Matsubara representation. Noting that the inverse of a
doubly-covariant tensor is a doubly-contravariant tensor,
the full Green’s function is generally expressed and com-
puted, in terms of the the Kohn-Sham Hamiltonian H,
as

G↵� (i!
n

) = ((i!
n

+ µ)S
↵�

�H
↵�

� ⌃
↵�

)�1 . (4)

Here, µ is the chemical potential, set to the average of
the highest occupied and lowest unoccupied Kohn-Sham
orbital energies, and ⌃ is the self-energy tensor gener-
ated by the DMFT algorithm, where ⌃ = 0 in the first
instance so that the initial full Green’s function is the
Kohn-Sham Green’s function G0. Green’s function sam-
pling at 400 Matsubara frequencies provided adequate
convergence of the properties of interest. We performed
this matrix inversion, as well as all matrix multiplications
involved in the DMFT algorithm, on graphical compu-
tational units (GPUs) using a tailor-made parallel im-
plementation of the LU decomposition using the CUDA
programming language. This provided a crucial improve-
ment in the computational feasabililty of our calculations.
Following inversion to find the the full Green’s function,
the Kohn-Sham subspace Green’s function G̃0 is given
by its projection onto the impurity subspace, where it

has the matrix representation

G̃0mm

0 (i!
n

) = h'̃
m

|Ĝ (i!
n

) |'̃
m

0i (5)

= W
m↵

G↵� (i!
n

)V
�m

0 ,

wherem andm0 run over the five iron 3d SNGWF projec-
tor functions (in real cubic-harmonic notation: d

x

2�y

2 ,
d3z2�r

2 , d
yz

, d
xz

, d
xy

), ↵ and � are the indices for
the NGWFs, and the matrices NGWF-projector over-

lap matrices are defined as V (I)
↵m

= h�
↵

|'(I)
m

i and W (I)
m↵

=

h'(I)
m

|�
↵

i.
In practice, in order to imbue the SNGWF Hubbard

projectors with a more plausible physical interpretation,
a real-space rotation of the functions was carried out [27]
in order to better align their lobes. The subspace pro-
jected Green’s function is thus transformed to

G̃rot = Ũ†G̃Ũ, (6)

where Ũ is the 5 ⇥ 5 rotation matrix in cubic harmonic
space, corresponding to a rotation in R(3), and G̃rot

is the rotated subspace Green’s function passed to the
DMFT solver. The rotation matrix Ũ is chosen, prag-
matically, such that the e

x

and e
y

axes are those, in an
averaged sense, which point towards the four nitrogen
atoms surrounding the iron-centered impurity subspace,
with e

z

directed out of the porphyrin plane.
Electronic correlation e↵ects beyond the capacity of

the approximate exchange-correlation functional, those
arising due to interactions between particles within the
impurity subspace and finite-temperature e↵ects, are
explicitly described in our DMFT calculations by the
Slater-Kanamori form of the Anderson impurity Hamil-
tonian [28, 29], specifically

H
U

= U
X

m

n
m"nm# + (U 0 � J

2
)
X

m>m

0

n
m

n
m

0 (7)

� J
X

m>m

0

⇣
2S

m

S
m

0 +
⇣
d†
m"d

†
m#dm0"dm0#

⌘⌘
.

In this, the first term describes the e↵ect of intra-orbital
Coulomb repulsion, parametrised by U , and the second
term describes the inter-orbital repulsion, proportional to
U 0, which is renormalized by the Hund’s exchange cou-
pling parameter J in order to ensure a fully rotationally
invariant Hamiltonian (for further information on this
topic, we refer the reader to Ref. [30]). The third term is
the Hund’s rule exchange coupling, described by a spin
exchange coupling of amplitude J . S

m

denotes the spin
corresponding to orbital m, so that S

m

= 1
2d

†
ms

�
ss

0d
ms

0 ,
where � is the vector of Pauli matrices indexed by s and
s0. We note that the Slater-Kanamori form of the ver-
tex interaction is especially well suited to capture the
multiplet properties of the low energy states [30]. The
Slater-Koster [31] interaction is another alternative, but
is mostly used to describe solids, and is not well suited
to the case of a molecule.

W (I)
m↵ = h'(I)

m |�↵i

G↵� (i!n) = ((i!n + µ)S↵� �H↵� � ⌃↵�)
�1

G̃0mm0 (i!n) = Wm↵G
↵� (i!n)V�m0

Projected Self energy:

⌃̃mm0 (i!n) = Wm↵⌃
↵� (i!n)V�m0
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Anderson Impurity Model
DMFT AIM local problem Hybridization of the AIM is given by:

4

In this this work, unless where otherwise stated, we
used U = 4 eV for the screened Coulomb interaction [32]
and we explored the dependence of several observables
on the Hunds coupling (in the range J = 0 � 2.5 eV).
Our DMFT calculations were carried out at room tem-
perature, T = 294 K, again except where otherwise
stated. The dependence of our results with respect to
the Coulomb repulsion U and the temperature T is also
discussed in the next sections.

METHODOLOGY: DYNAMICAL MEAN-FIELD
THEORY TREATMENT

The Hamiltonian (7), in combination with the expres-
sions (4) and (5), defines the many-body impurity prob-
lem that we solve using the DMFT algorithm [3], which
updates the impurity Green’s function G̃. The DMFT
establishes a self consistent mapping from the correlated
atoms of the initial solid or molecule and a smaller local
problem, the Anderson Impurity Model (AIM), which
is used to obtain the self energy within this projected
subspace [3]. The mapping is carried out self consis-
tently, and the obtained local Green’s function of the
AIM converges to the Green’s function of the larger space
projected onto the correlated atom. At the level of the
AIM, this model describes an impurity connected to a
bath by the so-called hybridization function. The bath
of the AIM models the surrounding environment of the
correlated atom in the solid or the molecule, and the hy-
bridization function describes how electrons are dynam-
ically transferred from and to the bath to the impurity.
Hence, at the AIM level, the uncorrelated part of the
Heme molecule is described by the bath, and the hy-
bridization between the d orbitals of the iron atom and
the N atoms is described by the hybridization function
in the AIM.

We define only a single impurity subspace in calcula-
tions on heme, since there is only one transition-metal
ion present, and so the impurity self-energy

⌃̃ = G̃�1
0 � G̃�1 (8)

resulting from the DMFT algorithm is said to be exactly
local, in the sense that there are no pairs of impurity sites
for which to consider site o↵-diagonal self-energy matrix
elements. In this particular case, there is no feedback
from the self energy to the hybridization function, and
the DMFT converges after one iteration. It is hence not
a mean-field approximation in this particular case, but
turns out to be exact. However, the methodology de-
scribed in this work can be applied to molecules with
many correlated ions with no further modifications.

The hybridization matrix � within the AIM impurity
subspace is given, formally, by

�(i!
n

) = (i!
n

+ µ) Õ� ⌃̃�Eimp � G̃�1, (9)

where here [33–35], the metric tensor on the SNGWFs is
given by

Õ =
�
WS�1V

��1
. (10)

This metric is in general non-trivial, i.e., Õ 6= 1 and
so the SNGWFs are nonorthogonal and not identical to
their duals, even if their parent atomic orbitals form an
orthonormal set, if the trial impurity subspace does not
form a proper subspace of the converged Kohn-Sham
Hilbert space. However, for this particular case of study,
we found however that the deviation of Õ from the iden-
tity matrix was small (within 0.1%).
The high-frequency part of the hybridization function,

Eimp = �(i!
n

! 1), defines the impurity energy levels
in the zero-hybridization “atomic” limit, so that the hy-
bridization matrix �(i!

n

) exhibits the correct physical
decay proportional to 1/i!

n

. We tested that the implied

limiting condition Õ = lim
!!1

h
G̃�1 (i!)00 /!

i
holds,

up to a high precision, ensuring that the self-energy is
physically meaningful. It can also be straightforwardly
obtained by doing a high frequency expansion of the
Green’s function that:

Eimp = ÕW
�
S�1HS�1

�
VÕ. (11)

The self-energy ⌃̃ is thus obtained by solving the
Anderson impurity model (AIM) defined by the hy-
bridization (9) and the interaction Hamiltonian (7), using
a finite-temperature Lanczos DMFT algorithm [36–38].
The Lanczos solver uses a finite discretization of the hy-
bridization (9), su↵ering finite size e↵ects, yet allows for
the orbital o↵-diagonal elements of the hybridization (9)
to be considered on an equal footing to the diagonal ele-
ments. Crucially, this mitigates some of the dependence
on the spatial form and orientation of the projector func-
tions (SNGWFs) used to define the impurity subspace.

Having solved for impurity self-energy given by the
AIM, ⌃̃rot, it is rotated back to the original system of
coordinates, to give

⌃̃ = Ũ⌃̃rotŨ†. (12)

We then “up-fold” it to the Kohn-Sham Hilbert space,
using its separable form in terms of NGWFs, that is

⌃
↵�

= V
↵m

⇣
⌃̃mm

0 � VdcÕ
mm

0
⌘
W

m

0
�

. (13)

A separable form of the up-folded self-energy enforces its
causality, as shown recently in Ref [39], (the local self-
energy for the impurity subspace being causal by con-

struction, so that ⌃̃
mm

0(i!
n

)
00  0, for all i!

n

,m,m0.
We carefully verified that our computed self-energies were
causal, a necessary condition for positive definite spectral
functions and the physicality of computed observables
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tity matrix was small (within 0.1%).
The high-frequency part of the hybridization function,

Eimp = �(i!
n

! 1), defines the impurity energy levels
in the zero-hybridization “atomic” limit, so that the hy-
bridization matrix �(i!

n

) exhibits the correct physical
decay proportional to 1/i!

n

. We tested that the implied

limiting condition Õ = lim
!!1

h
G̃�1 (i!)00 /!

i
holds,

up to a high precision, ensuring that the self-energy is
physically meaningful. It can also be straightforwardly
obtained by doing a high frequency expansion of the
Green’s function that:

Eimp = ÕW
�
S�1HS�1

�
VÕ. (11)

The self-energy ⌃̃ is thus obtained by solving the
Anderson impurity model (AIM) defined by the hy-
bridization (9) and the interaction Hamiltonian (7), using
a finite-temperature Lanczos DMFT algorithm [36–38].
The Lanczos solver uses a finite discretization of the hy-
bridization (9), su↵ering finite size e↵ects, yet allows for
the orbital o↵-diagonal elements of the hybridization (9)
to be considered on an equal footing to the diagonal ele-
ments. Crucially, this mitigates some of the dependence
on the spatial form and orientation of the projector func-
tions (SNGWFs) used to define the impurity subspace.

Having solved for impurity self-energy given by the
AIM, ⌃̃rot, it is rotated back to the original system of
coordinates, to give

⌃̃ = Ũ⌃̃rotŨ†. (12)

We then “up-fold” it to the Kohn-Sham Hilbert space,
using its separable form in terms of NGWFs, that is

⌃
↵�

= V
↵m

⇣
⌃̃mm

0 � VdcÕ
mm

0
⌘
W

m

0
�

. (13)

A separable form of the up-folded self-energy enforces its
causality, as shown recently in Ref [39], (the local self-
energy for the impurity subspace being causal by con-

struction, so that ⌃̃
mm

0(i!
n

)
00  0, for all i!

n

,m,m0.
We carefully verified that our computed self-energies were
causal, a necessary condition for positive definite spectral
functions and the physicality of computed observables

�(i!n) = (i!n + µ) Õ� ⌃̃�Eimp � G̃�1

with :

Obtain the self-energy from the local problem, and upfold back to NGWF 
space. How can we upfold ? It should be the inverse operation : 

⌃
upfolded

= V⌃̃W

⌃̃(! = 1) = ÕW
�
S�1⌃

upfolded

(! = 1)S�1
�
VÕ

⇣
ÕWS�1

⌘
V = 1

W
⇣
S�1VÕ

⌘
= 1

Causal ! But this simplication is only for G=0 !  The k 
dependence of the overlap matrix complicates everyting.
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Molecular dynamical mean-fiel theory

Lattice Dyson equation:

GF Matrix reprensentation:

Local projected Green’s function:
DMFT
solver

Projectors, 
localised 
orbitals

D. Zgid & G. Chan, J.Chem.Phys 134, 094115 ’ 11
Wednesday, 19 June 13



DMFT solver

198

e
Imp.

Vcpt Vcpt

Vcpt Vcpt

AIM defined by a set of local basis of atomic 
orbitals (c operator) connected to a bath (a 

operator) :

This hamiltonian yield the hybridization 
function:

We enforce that Himp reproduces the DMFT 
hybridization:

Finite temperature Lanczos solver Hybrid Lanczos solver

cluster perturbation theory 
(CPT) :

Wednesday, 19 June 13



Workflow
1) Setup the problem 
(pseudo-potentials, 

crystallographic 
structure, screened 

interactions) 

2) Converge the DFT
calculations 

3) Invert the Self-energy 
and hamiltonian (GPU)

4) Project the Green’s 
function on many 

atomic local problems.

5) Solve the AIM local 
problems in parallel 

(MPI+OPENMP). 

6) Upfold back the 
projected Self-energy to 

the large Kohn-Sham 
Hilbert space 20

Wednesday, 19 June 13



Ligand Binding : haemoglobin

Human haemoglobin heme (kernel) binding to O2

Biological Molecules typically consist of large uncorrelated structures (C,H,O) surrounding a 
functional kernel with a correlated ion, such as iron porphyrin in haemoglobin.

21

With DMFT: i) capture the quantum and thermal fluctuations not present at 
the DFT level, ii) capture subtle multi-determinantal effects (entanglement)

(pictures obtained from PDB database)

Earlier work, DFT+U calculations :  
D. A. Scherlis, M. Cococcion, P. Sit, and N. Marzari. J. Phys. Chem. B, 111 ’07.
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Haemoglobin : common wisdom

22

DFT calculations: energetics is 
affected by the conformation

problem: binding energy to CO is 1eV 
greater than to O2. CO is toxic !
( Biophys. Journ. 65, 1942 ‘ 93 )

Iron atom: J~0.8eV, U~4eV

Resonance Raman Spectra of Heme Proteins

scribes the change in MO energy due to complex forma-
tion, and does not depend on q; 26i, = Ei(0) - Ej(O) is an
energy gap between the ith and jth MOs, and vij and fij are
the corresponding one-electron matrix elements of the li-
gand "crystal field" and vibronic operators.
We can obtain an expression for the whole electronic en-

ergy of the system by summing over the valence MO en-
ergies, multiplied by their electronic population numbers, pi,
and adding the term 1/2Koq2, that describes the elastic energy
of inner orbitals

E =E -A f.pj.21 (
2
K0- )

i,j

(3)

where Eo is a whole energy of the pure Fe(P) and imidazole
and A describes the energy gain due to the complex formation
and does not depend on q. Taking advantage of Eq. 3 we can
calculate a position of the energy minimum of the system in
the q direction, which corresponds to the electron-vibrational
contribution into the iron out-of-plane displacement qev:

FIGURE 1 Schematic representation of the structure of the heme-
imidazole unit.

from this point of view (preliminary results of this analysis
were presented by Stavrov (1992)).

2. THE ORIGIN OF THE IRON OUT-OF-PLANE
DISPLACEMENT IN THE FIVE-COORDINATED
METALLOPORPHYRINS AND THEIR
ELECTRONIC STRUCTURE
In our previous works (Bersuker et al., 1979; Bersuker and
Stavrov, 1981, 1983, 1988; Stavrov and Bersuker, 1983)
the electronic causes for the iron displacement out of the
plane of the porphyrin nitrogens, q, in the heme proteins
and metalloporphyrins, Me(P)s, were investigated. To do
this we studied the simultaneous effect of the axial-ligand
"crystal field," of A2U symmetry, and of the electron-
nuclear (vibronic) interaction with the q displacement of
the same A2U symmetry (here and below we use notations
of the D4h point symmetry group). For complexes with one
axial ligand the second order perturbation theory in the
one-electron approximation led to the following expres-
sions for the valence MOs q,i

qi.(q) = qY )(0) 28.qfj5)(o) - q ijp0(O) (1)

and their energies Ei

Ei(q) = Ei() - Ai - qz f.v q2 (2)

ii

where 4ii(O) is the ith MO of the pure imidazole or Fe(P),
calculated for the iron-in-plane nuclear configuration of
the latter (q = 0); Ei(O) is its energy; Ai, a term that de-

qev = (IPpifi )(Ko° pi 2) (4)

We must notice that the contributions of the mixing MOs
with the same population numbers to the sums of Eqs 3 and
4 cancel each other. Therefore, the mixing of the iron por-
phyrin MOs with different pi only contributes to the depen-
dence of the whole electronic energy on q, leading to the iron
out-of-plane displacement in the complexes with one axial
ligand.

It was shown (Bersuker et al., 1979; Bersuker and Stavrov,
1981,1983,1988; Stavrov and Bersuker, 1983), that the main
contribution to qev results from the mixing of the alg(d,2) and
a2u(rr) orbitals, the population of the blg(dx2_y2) metal orbital
being also important for the reduction of the K, value. Using
this conclusion we can estimate qev value. The resulting force
constant can be calculated from the experimental data on the
mean-square amplitude of the iron atom at different tem-
peratures (Parak et al., 1982). This amplitude was attributed
to the low-frequency iron out-of-plane movement (Li and
Zgierski, 1992), and its force field constant can be calculated
in the high-temperature limit from the relationship 1/2K(q2) =
'kBT, K 1.2 eV/A2. The value of the vibronic constant,

fa2u,alg 0.3 eV, was calculated previously (Bersuker et al.,
1979). The corresponding "crystal field" matrix element can
be calculated using the data on the electronic structure of
Fe(P) complexes (Zerner and Gouterman, 1966; Roos and
Sundbom, 1970), va2t, 0.3 eV, and a,g,a2u 0.8 eV

(Zerner and Gouterman, 1966; Eaton et al., 1978). Using all
these values, we obtain qev 0.16 A. Note that both

fa2u,al and va are proportional to the values of the iron and
imidazole nitrogen charges. In the calculation we used the
charges obtained by the extended Huckel technique, which
underestimates charge separation in the complexes (Case
et al., 1979). It implies that the calculation underestimates
values of qev.

CkI~

Fe

Stavrov 1 943

I
I
I
I
I
I
I
I
I
I

N.

desoxy-haemoglobin is magnetic (and blue) 
Depending on configuration : singlet, 

triplet, or open-shell singlet

oxy-haemoglobin is non-magnetic (and red) 
Depending on configuration: triplet, quintet
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Heme topology 

oxy-Heme (FeP(O2)) - planar shape 
X-ray data (PDB database)

desoxy-heme (FeP) - domed shape.
Fe out of the nitrogen plane by 0.35A

What is the link between topology/Binding 
and electronic states (charge/spin)? 23

Heme 
(~240 orbitals)

AIM
5d orbitals

+bath

Wednesday, 19 June 13



24

FeP(CO)

dx2-y2
d3z2-r2
dxz
dxy
dyz

FeP(O2)

a)

b)

0 2 4 6 0
itn [eV]

-5

-4

-3

-2

-1

0

6
(it

n�
··�
>H
9@

dx2-y2
d3z2-r2
dxz
dxy
dyz

0 2 4 6 0-6

-5

-4

-3

-2

-1

0

o) DMFT converge after 1 iteration, no 
mean-field here (1 correlated atom)

o) hybridization depends on the structure
o) electronegative hydroxil group
o) Nitrogen ring around Fe atom

o) Strong hybridization of the dx2-y2 orbital

HEME = AIM

Fe

hydroxil
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Hund’s rule J in Heme
J drives a transition 
between low- to 
high-spin

Fully polarised state 
has 5 electrons (d-
shell)

Change of orbital 
polarization across 
the phase diagram

Sharp drop of the 
iron density at 
J~0.5-0.8eV

nd is a local 
observable, does not 
commute with the 
Hamiltonian (not a 
conserved quantity), 
e.g. fluctuate strongly

physical 
region
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Where do the electron go?

26

10

0 0.5
J [eV]

-4

-2

0

2

4

E(
J)

 - 
E(

J=
0)

 [e
V]

FeP(O2)
FeP(CO)

FIG. 3: Energy: variation of the total energy �E =
E(J)�E(J = 0) of FeP(O2) (red circles) and FeP(CO) (blue
circles) as a function of the Hund’s coupling. While there is
a drop in the energy for FeP(O2) at J ⇡ 0.8, the energy of
FeP(CO) is only weakly a↵ected by the Hund’s coupling.

J d
x

2�y

2 d3z2�r

2 d
xz

d
xy

d
yz

FeP 0 0.85 1.86 1.24 1.98 0.82

FeP 0.8 1.10 1.75 1.08 1.14 1.08

FeP(CO) 0 1.06 0.86 1.99 1.06 1.99

FeP(CO) 0.8 1.14 1.33 1.16 1.05 1.85

FeP(O2) 0 0.72 1.82 1.25 1.87 1.28

FeP(O2) 0.8 1.03 1.07 1.18 1.97 1.09

TABLE I: Average occupations n↵

d

of the iron d orbitals for
FeP, FeP(CO) and FeP(O2), for J=0 and J=0.8.

are not conserved quantum numbers, and can take frac-
tional values, which is a signature of valence fluctuations.

However, due to the form of the hybridization of the
iron atom in FeP, the orbitals (d3z2�r

2 ,d
xy

) are almost
filled and hence do not fluctuate (Table I) in the absence
of the Hund’s coupling. We also find that for FeP(CO)
and FeP(O2), the orbital which are almost full are respec-
tively the (d

xz

,d
yz

) and the (d3z2�r

2 ,d
xy

) orbitals.

The main e↵ect of the Hund’s coupling J is to increase
the magnetic moment of the iron atom, which in turn
yields a concomitant reduction of the iron density n

d

.
For FeP, there is a reduction of the iron density of 0.52 e
(see Table III), induced by the build up of the self en-
ergy at the iron site due to the Hund’s coupling and the
Coulomb repulsion, and a reduction of 0.25 e of the neigh-
bour N atoms. The charge is transferred to the two hy-
droxyl chains which are electronegative (each hydroxyl
chain contains two O atoms).

We find that in FeP(CO), the orbital mostly a↵ected by
an increase of J is the d

xz

: the occupation of the latter
is reduced from 2 e (J = 0) down to 1.16 e (J = 0.8eV).
For FeP(O2), the orbital which is strongly a↵ected by J
is the d3z2�r

2 orbital: the occupation of the latter is re-
duced from 1.8 e down to 1.07 e. Moreover, we find that
the reduction of the occupation of d

xz

in FeP(CO) and
the reduction of the occupation of d3z2�r

2 in FeP(O2)

J d
x

2�y

2 d3z2�r

2 d
xz

d
xy

d
yz

FeP 0 0.30 0.15 0.28 0.05 0.28

FeP 0.8 0.31 0.20 0.39 0.38* 0.39

FeP(CO) 0 0.37 0.37 0.03 0.48 0.03

FeP(CO) 0.8 0.37 0.40 0.46* 0.48 0.19

FeP(O2) 0 0.35 0.20 0.34 0.17 0.34

FeP(O2) 0.8 0.37 0.43* 0.45 0.08 0.46

TABLE II: Internal magnetic moment of the iron d orbitals for
FeP, FeP(CO) and FeP(O2), for J=0 and J=0.8. The inter-
nal orbital magnetic moment is obtained by S

↵

=
p

hS
↵

S
↵

i,
where ↵ is an index for the d orbital and S

↵

is the spin oper-
ator of the orbital ↵. The star highlights the orbital with the
largest moment increase.

atom �n(r)

Iron d orbitals -0.52

Nitrogen ring -0.25

hydroxyl groups +0.77

TABLE III: Variation of the charge �n(r) = n(r, J = 0.8)�
n(r, J = 0) in FeP induced by the Hund’s coupling.

are consistent with a build up of the magnetic moment
in the latter orbitals (see Table II). We note that both the
Coulomb repulsion U and the Hund’s coupling J have an
importance here, and promote di↵erent many body con-
figurations. The Coulomb repulsion U tend to suppress
doubly occupied many body configurations, whereas the
Hund’s coupling tends to generate many body configu-
rations with aligned spins. In particular, a physical con-
straint on the Hund’s coupling J is J < U (see Ref. [30]).
The reduction of the charge of the d

xz

orbital in
FeP(CO) and of the d3z2�r

2 orbital in FeP(O2) is ex-
pected to reduce the Coulomb energy, which penalises
doubly occupied orbitals. Moreover, the charge reduc-
tion is also expected to yield an optimisation of the ki-
netic energy, since transfer of electrons to a filled or-
bital are impossible. The latter is however not e↵ec-
tive in FeP(CO), since the d

xz

orbital does not hybridise
strongly (see Fig. 4.a) and hence no drastic change is ex-
pected in the kinetic energy, but the latter is expected to
be important for FeP(O2) since the d3z2�r

2 orbital hy-
bridise significantly (see Fig. 4.b). This accounts for the
further energy reduction in FeP(O2) at J ⇡ 0.8eV, not
present in FeP(CO), as observed in Fig. 3.

QUANTUM DYNAMICS: TRANSIENT
MAGNETIC RESPONSE SIMULATIONS

We analyzed the quantum dynamics of heme by
means of out-of-equilibrium calculations performed us-
ing a recently-developed implementation of the Keldysh
formalism adapted for Lanczos DMFT solvers [55]. Our
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J=
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FIG. 3: Energy: variation of the total energy �E =
E(J)�E(J = 0) of FeP(O2) (red circles) and FeP(CO) (blue
circles) as a function of the Hund’s coupling. While there is
a drop in the energy for FeP(O2) at J ⇡ 0.8, the energy of
FeP(CO) is only weakly a↵ected by the Hund’s coupling.

J d
x

2�y

2 d3z2�r

2 d
xz

d
xy

d
yz

FeP 0 0.85 1.86 1.24 1.98 0.82

FeP 0.8 1.10 1.75 1.08 1.14 1.08

FeP(CO) 0 1.06 0.86 1.99 1.06 1.99

FeP(CO) 0.8 1.14 1.33 1.16 1.05 1.85

FeP(O2) 0 0.72 1.82 1.25 1.87 1.28

FeP(O2) 0.8 1.03 1.07 1.18 1.97 1.09

TABLE I: Average occupations n↵

d

of the iron d orbitals for
FeP, FeP(CO) and FeP(O2), for J=0 and J=0.8.

are not conserved quantum numbers, and can take frac-
tional values, which is a signature of valence fluctuations.

However, due to the form of the hybridization of the
iron atom in FeP, the orbitals (d3z2�r

2 ,d
xy

) are almost
filled and hence do not fluctuate (Table I) in the absence
of the Hund’s coupling. We also find that for FeP(CO)
and FeP(O2), the orbital which are almost full are respec-
tively the (d

xz

,d
yz

) and the (d3z2�r

2 ,d
xy

) orbitals.

The main e↵ect of the Hund’s coupling J is to increase
the magnetic moment of the iron atom, which in turn
yields a concomitant reduction of the iron density n

d

.
For FeP, there is a reduction of the iron density of 0.52 e
(see Table III), induced by the build up of the self en-
ergy at the iron site due to the Hund’s coupling and the
Coulomb repulsion, and a reduction of 0.25 e of the neigh-
bour N atoms. The charge is transferred to the two hy-
droxyl chains which are electronegative (each hydroxyl
chain contains two O atoms).

We find that in FeP(CO), the orbital mostly a↵ected by
an increase of J is the d

xz

: the occupation of the latter
is reduced from 2 e (J = 0) down to 1.16 e (J = 0.8eV).
For FeP(O2), the orbital which is strongly a↵ected by J
is the d3z2�r

2 orbital: the occupation of the latter is re-
duced from 1.8 e down to 1.07 e. Moreover, we find that
the reduction of the occupation of d

xz

in FeP(CO) and
the reduction of the occupation of d3z2�r

2 in FeP(O2)

J d
x

2�y

2 d3z2�r

2 d
xz

d
xy

d
yz

FeP 0 0.30 0.15 0.28 0.05 0.28

FeP 0.8 0.31 0.20 0.39 0.38* 0.39

FeP(CO) 0 0.37 0.37 0.03 0.48 0.03

FeP(CO) 0.8 0.37 0.40 0.46* 0.48 0.19

FeP(O2) 0 0.35 0.20 0.34 0.17 0.34

FeP(O2) 0.8 0.37 0.43* 0.45 0.08 0.46

TABLE II: Internal magnetic moment of the iron d orbitals for
FeP, FeP(CO) and FeP(O2), for J=0 and J=0.8. The inter-
nal orbital magnetic moment is obtained by S

↵

=
p

hS
↵

S
↵

i,
where ↵ is an index for the d orbital and S

↵

is the spin oper-
ator of the orbital ↵. The star highlights the orbital with the
largest moment increase.

atom �n(r)

Iron d orbitals -0.52

Nitrogen ring -0.25

hydroxyl groups +0.77

TABLE III: Variation of the charge �n(r) = n(r, J = 0.8)�
n(r, J = 0) in FeP induced by the Hund’s coupling.

are consistent with a build up of the magnetic moment
in the latter orbitals (see Table II). We note that both the
Coulomb repulsion U and the Hund’s coupling J have an
importance here, and promote di↵erent many body con-
figurations. The Coulomb repulsion U tend to suppress
doubly occupied many body configurations, whereas the
Hund’s coupling tends to generate many body configu-
rations with aligned spins. In particular, a physical con-
straint on the Hund’s coupling J is J < U (see Ref. [30]).
The reduction of the charge of the d

xz

orbital in
FeP(CO) and of the d3z2�r

2 orbital in FeP(O2) is ex-
pected to reduce the Coulomb energy, which penalises
doubly occupied orbitals. Moreover, the charge reduc-
tion is also expected to yield an optimisation of the ki-
netic energy, since transfer of electrons to a filled or-
bital are impossible. The latter is however not e↵ec-
tive in FeP(CO), since the d

xz

orbital does not hybridise
strongly (see Fig. 4.a) and hence no drastic change is ex-
pected in the kinetic energy, but the latter is expected to
be important for FeP(O2) since the d3z2�r

2 orbital hy-
bridise significantly (see Fig. 4.b). This accounts for the
further energy reduction in FeP(O2) at J ⇡ 0.8eV, not
present in FeP(CO), as observed in Fig. 3.

QUANTUM DYNAMICS: TRANSIENT
MAGNETIC RESPONSE SIMULATIONS

We analyzed the quantum dynamics of heme by
means of out-of-equilibrium calculations performed us-
ing a recently-developed implementation of the Keldysh
formalism adapted for Lanczos DMFT solvers [55]. Our

J transfers charge to 
hydroxyl groups

increase J : 
empties 
doublets
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Fluctuating magnetic moment

no-symmetry 
breaking 

(paramagnetic 
solution)

not in a classical 
representation of a 

triplet state for 
J~0.8eV

Experimentally : 
strong dependence 

of the spin state with 
respect to small 

modifications in the 
structure

S =
q

hŜŜi � (hŜi)2 =
q

hŜŜi S = s (s+ 1)
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Decomposition of the ground state (and excited states) in 
impurity and bath parts

Reduced density matrix of the impurity r

Diagonalization of r yields the Von Neuman entropy:

Eigenvectors are “cartoon”representation of the dominant states

AIM - Entanglement - bath/impurity

28

⇢̂ =
X

i

e��EiTrB |iihi|

⇤ = �kB
X

k

�kln (�k)
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a) c)b)

Quantum entanglement (unligated heme)

29

low spin Fe state, 
low entropy, 

classical valence

d-shell reduced density matrix (bath 
degrees of freedom are integrated out)

physical 
region, 

high entropy, 
valence 

fluctuation
“valence 

fluctuations”
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Orbital selection in desoxy-heme

30

o) charge density of HOMO ( highest 
occupied orbital )

o) J pins the charge at the Fe site, 
+orbital along out-of-plane axis, orbital 

selection
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Optical absorption J=0.8eV

31Exp. data : Steinke, Clin. Chem., 38’92.
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Optics : J dependence

32

double peak structure (present in experiments) 
in oxy-heme emerges as J increases
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Relaxation, femto dynamics

33

Different geometries have different response 
against perturbations, spot molecules according 

to their magnetic response.

Photolysis excitation, shift in Raman 
spectra versus time, 

(Franzen, Biophys. Journal 80’01)

ii) out of equilibrum quantum formalism (Keldysh formalism)
i) at t=0 we polarize Fe, and we let the system relax to equilibrum
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Energetics

34
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�E = E(FeP (X))� (E(FeP ) + E(X))

��E = �ECO ��EO2

Further energy 
reduction?
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U and temperature variations

35

Weak U and temperature dependence

Weak variation of the charge with U for J=0  
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Myoglobin, 53 residues

36

Geometry optimization, 
by first principle 

calculations by Daniel 
Cole 

D. Cole et al, J. Phys. Chem. 
Lett., 3, 1448 ’ 12

i) 5th ligand

ii) bending of the Fe-O 
angle

iii) strain induced by the 
protein (protein effect)

oxy-myoglobin
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DFT+DMFT: myoglobin
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Outlooks

Iron 
peptides, 

applications 
for drug 
design

Supra-paramagnetic iron oxide (SPION) 
molecules,

applications for targeted drug delivery, 
MRI contrast agents, ... 

left : Spion diffusion in a liposome 
surface

C. Bonnaud et al, TMAG, 49, 2219040 ’ 12
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Fig. 5. Schematic representation of the combined tilting-projection effect. On
top is a schematic liposome, represented as a sphere, surrounded by several par-
ticles: above the liposome (red), inside the liposome (white), inside the mem-
brane (black and yellow). At 0 projection, with the exception of the white par-
ticle, all particles are seemingly associated with the membrane (schematic bi-
layer representation). This interpretation is true for black and yellow, but not for
the red particle. If the sample is tilted, particles will rotate in function of their
position and a tilt-dependent shift on the projected image is observed. If parti-
cles are above or below the liposome, they will appear outside the liposome at
certain tilt angles. A particle inside will never be projected at the same position
as the membrane.

usually achieved by cryofixation procedures but should never-
theless be ensured by an electron diffractogram of the sample.

Crystalline ice induces morphological changes, which cause

for example abrupt angles to membranes. Finally, cryo-fixed
samples can only bear a limited electron dose, usually around

50 to 100 electrons per square Angstrom. Higher electron

doses evoke immediate but localized destruction of the sample

(so-called bubbling). Therefore, meta-data on approximate

sample thickness, water state and applied total electron dose

should accompany cryo electron micrographs.

IV. CONCLUSION

Transmission electron microscopy remains crucial for the

analysis of liposomal systems and the interaction with colloidal

nanoparticles. Delivering sufficient resolution, the data however
comes as projections, thereby losing information on the third

dimension. This is an obvious but central point for the localiza-

tion of SPIONs inside membranes. Furthermore, water-based

systems such as liposomal solution demand cryo-electron

Fig. 6. Cryo-electron tomography and 3-D reconstruction of SPIONs and lipo-
somes (prepared as Fig. 2). The sample holder was tilted between ,
with a 3 increment. The defocus was set at ; the total electron dose
was . Top: top view (YX), side view (XZ) and front view (YZ)
slices from the 3 dimensional stacks. The dark contrast of a SPION in the mem-
brane is seen in all the slices. Below: the rendered model. Polar regions of li-
posomes are missing due to incomplete sampling during tilt series acquisition

. The model shows that SPIONs (yellow) co-localize in 3-D
space with the liposome membrane (red).

microscopy in order to preserve their ultrastructure as close as

possible to the native state. Additionally, proper interpretation

of the applied defocus is necessary. Phase contrast gives an

edge-detecting effect that provides contrast for liposomes but

can be mistakenly understood as a membrane bilayer on other

objects.

Finally, the electron dose limits the signal to noise ratio, and

a noisy image might result in misinterpretation. Tilt stereopairs

is the easiest form of a reconstruction of the third dimension and

DMFT along 
conformal 
trajectory 
(change of 
structure of 

the molecule)
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Conclusion

39

DMFT refines ONETEP by treating the strong 
correlations in the atomic d shell

We presented an implementation of molecular 
dynamical mean-field theory

Hund’s coupling in molecules, not taken into 
account in most DFT or DFT+U, a new approach 
for molecules

Energetics are corrected by the DMFT

A view on ligand binding from the strong 
correlation perspective, convergence and 
interdisciplinary work with Quantum Chemistry 
approaches
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